If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y^2+25-20y=0
a = -4; b = -20; c = +25;
Δ = b2-4ac
Δ = -202-4·(-4)·25
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*-4}=\frac{20-20\sqrt{2}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*-4}=\frac{20+20\sqrt{2}}{-8} $
| 3.4+2x=-2.6 | | 40=4+2.25x | | 13(9x+18)=12 | | x=0.5x=0.75 | | x/8=32/x | | 8x-313=-3x+11-4 | | 14/9=-4/9+x | | 2^(5x)=8^(2x)-4 | | 3y-22=18-17 | | 14+3h=15h | | 6(x+1)=3x+21 | | 3x+50-5+10x+70=180 | | 15=3/4k | | 15=2/3k | | 16x²+36x+8=0 | | 0.99x=10-0.89x | | 10a+7=12 | | z/6+34=43 | | 20=100-(x+30) | | 4.3^(x)=9.2^(7x) | | 3(2−w)=5(1−w) | | -6u+41.7=3.3 | | 5(2t+3)=30 | | 12y-16=68 | | -4(x-1)-8(-x+7)=-56+2(x-1) | | 6x−40=260 | | (41x1.8)=32) | | 10h+58=2- | | 2y^2+18y+41=(y+6) | | 5(x+9)=2(x=3) | | x−–13=29 | | (x)/2=8 |